9 Vegetables You Can Grow In Hydroponics (with pictures)

Hydroponics is a booming means of growing produce at home. New gardeners who are thinking about this often wonder what are the best crops to grow, which are easy and will deliver the best yields.

There are many reasons why individuals are turning to this way of growing, and it doesn’t matter if it is because they want to help save the planet, or cut down on their grocery bill. Hydroponics is a great way to do this and much more.

While not every vegetable thrives in a hydroponic environment, many do. So here are the top, nine any new hydroponic grower can grow into their system. Some are very easy, while others take a bit more effort and space, but nonetheless, all of them are worth adding to any hydroponic garden.

Here, we will look at each of these top nine hydroponic vegetables and which systems are best suited to their growth.

Best Vegetables for Hydroponics 


Leaf lettuce makes an outstanding option for hydroponic cultivation. It grows in the simplest systems and requires minimal attention. As you grow, you can harvest the external leaves from your lettuce, meaning you will end with a prolonged crop of fresh, crunchy lettuce. As the leaves are cut, the internal leaves will grow rapidly to take their place.

There are many varieties to choose from, and most of them are suitable for growing this way. The more common types are:

  • Tom Thumb
  • Boston
  • Iceberg
  • New York
  • Romaine
  • Buttercrunch Bibb
  • Simpson
  • Waldman’s Dark Green

Lettuce are suitable to grow in NFT, DWC and Ebb and Flow systems. If the temperature gets too hot for them, lettuce can bolt and may taste bitter. They are a cool weather vegetable and like temperatures between 50 and 70 degrees fahrenheit. Lettuce are also fond of high nitrogen levels.


Kale is one of the top vegetables that is grown because of its health benefits and is delicious flavor. This can be germinated from seeds and once it begins growing, it can handle a wide range of temperatures from 45 to 85 degrees fahrenheit.

From seed to harvest takes around ten weeks, yet like lettuce, you can pluck up to 30% of the plant leaves. Again, new leaves will grow back and you can extend the time your crops are in your system. If you transplant, you can cut the time to harvest down to around 6-weeks. One good thing with kale when grown indoors is that many pests don’t target it. Aphids being the primary culprit, yet they can suffer from powdery mildew.

The main varieties are Curly kale (common type sold in grocery stores), Lacinato kale (sweeter and have longer leaves), and Red Russian Kale.  This variety is the sweetest you can grow and has a reddish appearance.


Being another cool weather crop, this is perfect to grow along with lettuce and kale. Any temperature over 75 degrees fahrenheit will see the plant suffer. It can be grown from seeds and many hydroponic growers will place their seeds in the refrigerator for up to three weeks before planting. This creates a plant that is hardier and thus a healthier plant. They do like around 12 hours of light daily, however, because they are cool weather plants, T5 fluorescent lamps may be the better option for lighting.

When it is almost time to harvest, you can lower the temperatures because this has the effect of making the crop sweeter. However, because of this, growth will slow. It is advisable to go for quality over quantity to prevent a bitter tasting leaf.

Most systems are suitable for spinach, but just remember to plant them a few weeks apart so you can have continual harvests. A raft system can be perfect for these as it can be for lettuce and kale as well.


Growing cucumber in hydroponics can be so rewarding. These vegetables love the conditions they are given. Warmth, nutrients and lots of moisture are perfect. Growers are amazed at the yields because they quickly become one of the highest yielding vegetables you can grow.

The ideal temperatures for optimal growth are just outside the ranges that the above leafy greens like. Saying this, they can grow in a range from 60 to 82 degrees fahrenheit. This makes them ideal for growing alongside the next two crops in the list.

Cucumber likes a pH of 5.8 with an EC between 1.8 and 2. Growers can find seeds expensive for a good hybrid strain, yet when you see what fruits one seed can bear once it is growing, this cost per seed is more than justified.

The hardest thing with cucumber growth is they are vining plants and will need trellises. This makes them more suited to flood and drain or other bucket type systems, where there is plenty of growing medium to help support. This being said, coco coir is one of the better mediums to use as long as the plants are supported well.

Be on the lookout for pests like mites, thrips, whiteflies, and aphids. These insects love to take advantage of cucumber crops.

Nutritious Tomatoes


When growers move on to tomatoes, it shows they understand their system and wish to go on to the next level. Having a continual supply of fresh tomatoes is what hydroponics is all about.  

These are a warm weather plant and like the temperatures like cucumbers. They do however prefer an EC level that begins at 2 and goes up to 5, so any system will need to be separated to allow tomatoes to grow on their own, or at least with other plants that like this level.

The ideal pH is between 5.5 and 6.5 and the temperature is between 58 and 79 degrees fahrenheit. The upper end of the range more preferable.

They can be planted from seeds, yet cuttings or seedlings are advisable because it takes too long to grow fruiting plants from seeds. There are many varying types, yet the vining varieties are popular because they are easier to control and harvest from.

Tomatoes as if cucumbers require trellises so they can grow upward, and they will deliver a steady stream of fresh fruits you can part harvest.

Tomatoes can suffer from various pests and diseases like spider mites, aphids, mosaic virus and much more. One other thing that can occur depending on tomato variety is they can be prone to splits. This is when the inside of the tomato grows faster than the skin. This often happens when they take up too much water in a short time.


Although most root vegetables are not ideal for growing hydroponically, radish are different. These are a cool weather crop so they can accompany the first few plants in the list. They also mature rapidly, and just happen to be one of the easiest plants to grow.

The pH is bets around 6 to 7, and the temperatures between 50 and 65 degrees fahrenheit. If you are growing a longer radish variety, these can withstand a bit more heat than the short bulb kinds. EC levels should fall between 1.6 and 2.2.

Lighting requirements are minimal, and at least 6-hours are needed. Optimal levels are between 8 and 10 hours of light.

Seedlings are not recommended, and they are better grown from seeds. From germination to harvest can be as little as three or four weeks. Add to this, if you stagger your planting, you can harvest all the way through the year. This cool-weather vegetable grows excellent in hydroponic systems where the temperature hovers between 72-76 degrees Fahrenheit.

The most common problems with radish is they can easily bolt if they are not kept mist, and if they are too wet, they can suffer from root rot.


Nearly every kind of bean can be grown in a hydroponic garden. There are hundreds you can choose from yet the most common are runners, string, pole beans and bush beans. These are easy maintenance and very productive for the effort which goes into growing them. Some types do take more effort because they are climbing/ vining plants so they will need support trellises.

When growing from seed, they are speedy germinators and can take less than two weeks. You may even see some varieties start in as little as seven days.

When growing and you can see they have two true leaves, then they are the right size to go into your garden. Depending on your system type, although ebb and flow being the better option, however, a drip system is also ideal. Plants should be planted around 4-inches apart when they are the bush variety. Pole beans should be spaced a little wider apart at around 6-inches.

One good thing with beans is they self-pollinate. Growing medium should be loose so hydroton pebbles or a mix of perlite and vermiculite are good options and have several advantages. With a neutral pH, perlite won’t affect your levels and expanded clay pebbles offer enough moisture and oxygen to the roots.

Twelve or thirteen hours of light is enough, and the daily temperatures should be between 70 and 80 degrees fahrenheit. If a temperature falls below 60, or rises above 60, then there will be a knock-on effect to the plants pod growth.

Beans don’t need many nutrients and when spacing them apart when planting, you can have a continual harvest. This can come in as little as 50 days for each plant.


Peppers are a great addition as they can be grown in any season. Not just this, but yields growers can experience are much larger than if they are grown by conventional means. This means fruits are larger and a better quality as the plants are delivered what they need to allow them to grow to their genetic potential.

Ebb and flow systems are best suited to this kind of vegetable, although they can be comfortable being grown in others which have a good base of growing media for support. These plants can grow quite large, so they need additional spacing of between 7 to 9 inches between plants. This can limit a pot to two plants only.

Lighting needs to be around six to eight inches above the plants and will need adjusting as they mature. If the bulbs are closer than this, it can cause scorching, and if further away, it can affect the yield or potential growth.

Lighting needs to be up to 12 hours per day, and no less than 10. Additionally, they will need sufficient amounts of nighttime hours as well. Daily temperatures need to be between 73 and 80 degrees fahrenheit, so they are perfect companions to be with cucumbers and tomatoes.

Extra attention is required during their growth where stem buds need pruning as the plants are about 8-inches in height. This helps the plant devote its energies into larger fruits than lots of smaller ones.

The pH levels need to be between 5.5 and 7, and the EC should fall in the range of 3 to 3.5.


Celery can be one of the harder vegetables to grow in a hydroponic environment, but it doesn’t mean it’s impossible. Celery seeds take up to two weeks to germinate, which is pretty long compared to other vegetables. A quicker alternative is to use the stalk of celery you purchased from the store.

If you take the stalk and cut 2 inches from the bottom, then place the base in a plate of room temperature water, it will actually start to grow after only a week. Celery needs a lot of water, so the proper system to choose would be a deep water system. Along with germinating seeds, harvesting celery can take up to 4 months total after the seeds are planted.

Celery likes a pH level of 6.5, and the EC level of the nutrients should be 1.8 to 2.4. This can be an accompanying plant in a grow room which is geared up for lettuce and cool weather crops. The daylight temperatures should be between 58 and 80 degrees fahrenheit. Lighting isn’t extreme and they only need around 6 hours per day.

It can take a long time to maturity and harvest, and they can test a grower who will need patience, however, growing this crop can be one of the most rewarding considering how expensive it can be from the supermarket.

Benefits of Hydroponics to Grow Vegetables

Using hydroponics to grow vegetables can be highly beneficial, especially in regions where conditions are not suitable, or those times of the year when nothing will grow. Many of the crops above can be grown around the year, or you can grow these while planting any of the many others, which aren’t on the list in a different growing season.

There are countless benefits no matter what you choose to grow, and here are a few you will see:

Larger Yields

Hydroponics can’t make vegetables grow larger than their genetics lets them, however, they can grow to their full potential and in a much smaller space than they can in soil. Being able to control the nutrients and pH levels in the water also ensures only optimal growth for the vegetables leaving little room for failure.

All Year Round Crops

As we just saw, because the gardener is in total control, they can use artificial lighting and warner indoor growing conditions to grow through the year. Crops that are out of season become expensive when they are shipped in, but having them a few steps away from your kitchen makes all the difference.

Less Space

Hydroponic systems can be built almost anywhere. They can be indoors away from any natural light, or they can be in outdoor areas undercover, or in a greenhouse in the garden. However, with a much smaller space, they can churn out many more crop harvests which is possible than if the garden was in soil.


When a hydroponic garden is up and running, they can easily produce more than enough food for a large family.

While some crops are not suited, there can be little need to purchase some vegetables ever again. Many growers begin by just growing for consumption, yet as they go along they find they expand and need to begin getting rid of vegetables because they are producing too many.

Family and friends will be thankful of tasty fresh vegetables, yet there are the shrewd growers who turn their gardens into small home enterprises.

The vegetables above are just the tip of what is possible with hydroponics. The choice of what you grow is up to you, but just the ones above mean you can have a wide variety of choice. Start with these and as soon as you gain more knowledge, or you find you have that extra little space, you can expand and tackle herbs, strawberries or anything else you find is hard to come by where you live.

How Big of a Reservoir Do Hydroponics Need?

When any grower begins looking at building a hydroponic system, one of the main components will be the reservoir. Because the entire process revolves around water, this will need a home that is worthy of the life giving essence that the water provides.

The question arises for many growers because they may be trying to figure out what will fit where in their designated growing area. “How big of a reservoir do hydroponics need?” There is a general rule for this, which we will see, yet there is much more to determining the size of a nutrient reservoir than just having one of a specific size.

Carry on reading for all you need to know about hydroponics tanks and how you can be sure you have one that will meet all the needs of your system.

Do You Need Hydroponic Reservoirs?

Reservoirs are a fundamental component of any system. If it weren’t for these, there would be no place to put the water and nutrient solution. There are a few aspects to go through rather than just thinking a reservoir of a certain size is good for a given number of plants.

One of the first to know is that the size can change depending on the type of system you are looking to run. However, no matter what system you are using, the consensus is that the bigger the reservoir, the better it is for your system.

The reasons for this are a larger tank can help with pH swings, nutrient solution fluctuations and the depletion of oxygen. As soon as any of these factors are affected, then there is a knock on effect with the rest of the system and the plants.

You can add to this how the environment plays a role in the operation of a reservoir. Plants will change their uptake of water and nutrients depending on the environment, and if the humidity is lower than the ideal 60 and 80 percent, and is lower than forty to fifty percent humidity will cause plants to take up much more water to compensate.

If it were just a basic calculation to determine the reservoir size, this would be easy. As a rule, there should be the following:

  • Small plants: 1/2 gallon of water per plant
  • Medium sized plants: 1 – 1/12 gallons of water per plant
  • Large plants: 2 1/2 gallons of water as a bare minimum

Although these are the recommendations, many seasoned growers will double these volumes without a second thought just to be sure.

How Do Systems Use Reservoirs?

Here is a quick look at the different systems and how a reservoir fits in with their design.

  • DWC (Deep Water Culture): Plants are suspended over the top of the reservoir. The solution will be highly oxygenated as no water pump is used.
  • Ebb and Flow: The reservoir sits under the flood table. Using a timer, this is flooded periodically. Once the timer cuts off, then the solution drains back to the reservoir.
  • Drip Systems: Reservoirs sit lower than the plants. A pump will feed solution through small tubes where it drains through the growing media and makes its way back to the reservoir using gravity.
  • NFT (Nutrient Film Technique): A thin stream of water is continually pumped into the highest point of troughs or channels. Plants are suspended over this so their roots can hang into the solution. Gravity is the usual means of returning the solution back into the reservoir.
  • Wick Systems: A thick rope will sit in a reservoir and feed up to the growing medium in a container sitting on the top. Plants will be fed by this wicking action, which delivers nutrients upward.

The Roles of Hydroponic Reservoirs

Here are the areas where reservoirs help to keep systems running at their best. As we have just seen, each system can use their own reservoir in a different way. However, all the following will be common, regardless of the system, the plant type or the location.

These few areas are what makes your system tick and stay healthy.

Nutrient Preparation

Your reservoir is the ideal place where to mix your nutrients. Some growers may mix in a separate container and then add to the reservoir, yet this makes little sense to add more work into the equation.

In an ideal world, you should have a spare reservoir, and this is where you will be mixing your next batch while one is in use.

Water Oxygenation

Without oxygen, plants die and will die quick. Depending on the system type, these solutions need lots of oxygenation through the use of an air pump. This then has tubes running into the mixture, and air stones or air diffusers convert this into tiny bubbles, which the water absorbs.

While some of the systems use the water cascading back into the reservoir, this doesn’t deliver as much oxygen as a good air pump.

Concentration of Nutrients

As water is taken up by your plants or water levels drop by environmental factors. This means the concentrations of the nutrients increases. This will be very different from when you first mixed the batch, and will make it harder for plants to absorb what they need in the right amounts.

Your solution will need continual testing and adjustment as is required. Yet, the larger your reservoir, the rate at which the solution changes concentration is somewhat diminished. This can help reduce the amount of testing, and space out the intervals for replacing solution.

A good EC (Electrical Conductivity) meter can take a quick reading and let you know the levels of nutrient concentration. There is no way at present to determine what levels of each nutrient there is in the solution.

Ease of monitoring and adjusting solution pH levels

Just like EC levels, the pH of your solution will fluctuate. This can be from a change in concentration or there is a change in the temperature. Holding a pH in the desired ranges is vital for the health of the plants.

When you have a change in pH, this can lead to nutrient lockout or nutrient toxicity if it swings the other way. The larger the reservoir, the slower the rate of change of your pH. This makes testing more straightforward and not required as often. You can find adjusting pH is easier when there is a larger amount of liquid.

Solution Temperatures

A small reservoir can heat up much faster than a larger volume of water. Plants like temperatures between 68 and 75 degrees fahrenheit for their solution. It doesn’t matter if you live in colder areas or warmer, this larger volume of water is easier to control once you heat or cool it.

One sure way to help with maintaining solution temperatures is to use insulated reservoirs. These will help even more in keeping the temperatures stable without the use of a hydroponic water chiller or heater.

Reservoir Considerations When Choosing

Before purchasing any reservoir, there are some things to consider aside from the above. While all tanks may appear appropriate, this isn’t the case.

In this section, we will look at all the factors, which can determine your final choice of reservoir for your hydroponic system.

Reservoir Construction

Many gardeners construct their own systems. This leaves the choice of materials for their reservoir very different from if they were purchasing one. While it leads for lots of creativity, this is often done more for cost saving.

Large plastic totes can hold massive amounts of water, and thus can be a viable solution. However, once these are filled, it can lead to issues, which are not noticeable in the beginning.

Once these containers get warm over time, they begin to deform and bulge outward. There are many reservoirs, which are made from durable and sturdy materials that are a better choice. Barrels or large picnic coolers can be great options, and in most cases, they will be made from food grade materials such as polyethylene.

Reservoirs Need Lids

Depending if you construct your own reservoir, or purchase one specifically will determine if it comes with a lid. While these don’t appear to be too important, they are in fact crucial for a couple of reasons.

A lid on your tank can reduce the evaporation of your solution, this helps maintain the EC and pH levels to what they should be.

Reservoir Color

Aside from a lid preventing evaporation, there is the fact that as light begins hitting your solution, there will be algae growth. Algae can deliver a whole host of issues like depleted nutrients and oxygen from the water.

The time between cleaning this growth from your tank can also reduce. While dark colors are a recommendation to prevent light seepage, these can absorb heat from grow lights. Covering tanks in silver foil or insulation can help keep light out and keep your solution cool. It is worth noting that warmer solutions can’t hold dissolved oxygen as well as colder solutions

Tank Location

This can depend on the kind of system you are running, but not only that, once they are full of water, there is no way you can relocate them.

Your reservoir will need to be out of any direct sunlight and it should ideally be close to a water source and a drain. This can make topping off and cleaning that much easier. One other thing that may have a bearing on this is the system type.

Many tanks sit under the bed of the system. Accessing the tank while the garden is in use can be very difficult. There will be hoses, pumps and pipes all over the place, which can be hard to dismantle to gain access. There is also then the consideration of how close the tank is to the grow lights. Hence the dark color and the silver insulation.

Care and Cleaning of Nutrients and Reservoirs

A reservoir and the solution it contains will only be as good as the care and attention it receives. It isn’t possible to fill one and then expect everything to be fine until it is almost empty. Here are some things to know about the care and attention for both elements.


There are many methods of testing solutions to be sure the levels are correct. While you can use manual means of doing so, these are not as effective as meters, which can make these readings in a much shorter time.

There are expensive automated means of doing the same thing, yet meters are not worth anything if they are not used. It is possible to purchase multi-purpose meters that are capable of taking readings of different elements like pH, EC and the PPM/TDS.

Many gardeners now use this kind because of the timesavings when testing. Not only this, but they are more accurate that manual testing means. One thing to be sure of is that any device you purchase can have manual calibration. This can prolong their accuracy and their life while reducing errors.


We have seen how vital dissolved oxygen is for plant health. The best ways to do this are through air pumps and air stones. The benefits are still being seen, so it is better to have more oxygen in your water than too little.

The other plus side of this is it prevents water stagnation and keeps nutrients being continually mixed and stimulated. This aeration can actually help with the nutrient uptake by your plants, and thus helping promote plant growth.

One area, which may not be seen by new growers, is that this aeration can help prevent any development of pathogens. Rather than any anaerobic bacteria forming, there is the growth of many other organisms that are beneficial.

Topping off Tips

Every grower has to top off his or her tank at some stage. Up until this stage, there will be lots of testing and waiting. However, levels will begin to drop the longer the system is running. We saw that nutrients strength increases because water take up is higher than nutrients.

This means that water needs adding to make sure plants have enough, and to dilute the nutrients before they become toxic. However, there is only so many times you can top off a hydroponic reservoir before the nutrient solution becomes too weak, and you are in need of mixing a new batch.

When first filling, you need to mark the high water level on the inside of your reservoir. This will need checking daily, and you can top off up to that level as required. This happens every few days rather than daily.

While doing this you will need to keep a check of how many gallons, you add. A good rule to follow is that once you have replaced 50% of the original volume, then this is time to consider flushing the system.

Reservoir Flushing

It doesn’t matter how large and how good this larger volume of solution is at buffering changes in the nutrient levels or the pH. There comes a time when you top off the the extent that the solution is weak, there is debris in it, or you are having issues with nutrient deficiencies you just can’t work out.

Having a clean tank is the ideal way to solve most problems, and it is the only time you know what your levels are. There are long conversations and debated when the best time for system flushing is, yet you can find that even if there is no real right time, there is definitely no wrong time.

It can be as little as a few days before your levels start changing from the ones you set, so it is easy to see why this system flushing occurs on a regular basis. Some gardeners may flush weekly, while others recommend bi-weekly. This is true for vegetables, which can take on a bitter taste through too much nutrient absorption.

Hobby gardeners can follow this and flush more often than not. This can resolve issues from beginning without affecting their plants.


As we can see, there is no real upper limit on size of hydroponic reservoir, yet being realistic does come into it. The main thing to consider is that you don’t choose one, which is just the right size or smaller. This can leave with continual issues you need to deal with, and you have no way to turn to offer a solution.

You can see why gardeners come up with the recommended size by the number of plants and the volume of water for each plant before doubling it. These buffers can make all the difference between healthy crops and a failed crop.

With the reservoir, that is the ideal size, and if possible, a second where to mix and use as the other is out of commission can lead to less downtime and a healthy yield from your garden. For the gardeners who can’t afford or fit in a second tank. All the above information should be enough to make sure their primary tank is large enough and cared for to give a healthy system.

How Often Should You Fertilize Hydroponics?

One of the main questions which catches new growers out, is that of how often they fertilize their hydroponic system. Once their systems are up and running, this frequency can be a lot less than many growers think.

As a general guide, if you are remixing your nutrients between 7 and 10 days, then just topping off your reservoir with plain water will be sufficient. However, you will need to check daily because the strength of your nutrient will change as plants take up water.

The nutrient levels should sit in a range of between 800 to 1500 ppm (parts per million), this can vary depending on the kind of plants being grown.

Here we will look more in depth at how you need to set your reservoir and maintain the right levels of fertilizer and nutrients. We will also look at two ways growers determine the right times to add more fertilizer to their system.

Selection and Preparation of Nutrient Solutions

When it comes to hydroponic nutrients, you can go about this a few different ways. You can purchase ready-made solutions, you can buy nutrient solutions which come in two or three parts or you can make your own from scratch.

For growers with small gardens, it is advisable to go with the two- or three-part solution. This allows you to be flexible and tailor your nutrients to the type of plants you are growing, and the stage that they are at in their growth.

There are a few factors, which determine the proportion of nutrients you use in your system. This will be the same regardless of the way you get your nutrients from the above three methods.

  • Plant type and variety
  • Growth stage of plants
  • Plants parts you want to encourage growth and development
  • Intensity of light, weather, season and grow room temperatures

If you decide to go with a ready-made solution, be sure it is made specifically for hydroponic systems. Fertilizers, which are developed for soil lack many of the micronutrients required as these, are already found in the earth.

How EC Levels Affect Hydroponic Nutrient Solutions

To determine the nutrient concentrations in your solution, you will measure the EC (Electrical Conductivity) – we’ve written a complete guide which you can find here. To do this, you will use a digital EC meter. Once you take a reading, this will be converted into the dissolved solids, or as we know them the PPM (Parts Per Million).

These EC meters can help when you are mixing your solution, and it is at the correct solution, and they can help monitor the concentration over time.

One thing to note is that EC levels will never weaken on their own, and will always become stronger as plants absorb water faster than they absorb nutrients.

These EC meters are vital and will help growers to prepare their solutions, monitor their concentrations, dilute these as necessary and know when it is nearly time to fertilize their system again.

EC Reading Problems

As helpful as EC meters are, they are not the solution to everything. While they are capable of giving you the PPM of your solution, they cannot differentiate between the various compounds of your nutrients. This can be a problem if you live in a hard water area, and a fair percentage of your PPM comes from unknown dissolved solids in your water.

Hydroponic Nutrient pH Levels

Once you have your initial mix, it will have a specific pH level. Depending on plant types, the optimal levels are around 5.5 to 6.3 in hydroponic systems. Each type of nutrient will be absorbed by your plants at varying rates, depending on the pH levels of your solution.

Solutions, which have a drop of under 5.5 of their pH, run the risk of having deficiencies in some nutrients while others are having a toxic effect as they are being absorbed too quickly.

If the pH rises too much, this can lead to speedier evaporation of micronutrients from the solution. This will lead to deficiencies in certain nutrients.

Checking pH levels is required almost daily, and sometimes, more than once per day. As plants continually absorb minerals and nutrients, pH levels will change, as will the overall EC / PPM of the solution.

We’ve written complete guides to testing your pH levels, and showing how to balance your pH if it’s not quite right!

Topping Off and Adding Fertilizers

This is two parts of the same area in your system. With the above, we saw ways for a grower to understand what is happening with their nutrient levels inside their tanks.

It is from here that you can find when to add, or how often you should fertilize your hydroponic plants.

Once you run your system, test your levels and once everything stabilizes, you will see that your water levels drop as your plants absorb fluids and nutrients. Aside from this, there will be a loss of water through evaporation.

When you first fill your tank, you should mark the high water level. You should check water levels daily and only top up to this mark. Depending on the type of system you have, you will top off every few days. It is here that plant type and temperatures come into play.

As you add water to your tank, you should record how much you add, it is this that can help you determine when you need to flush your system.

As you progress with your system, you will come to find that no nutrient mix is perfect, and there will be problems along the way. For this reason, flushing a system is vital to have a fresh start and correct any imbalance in your system. pH swings or EC levels that are totally out of balance being the main things.

This flushing of systems comes under much debate and discussion. You will also find that this determines how often you fertilize your hydroponic system.

Adding Fertilizer after Flushing Systems

There are two ways that growers look at when to flush their system and thus introduce a new set of fertilizer to their system. A general rule, which is often used, is that reservoirs will be emptied and re-filled no longer, than ten days into any growing phase.

This will be the extreme case because it will be determined by EC levels. On average, the time to change would be between 5 and 7 days. However, these EC readings can cause the issues. Because they give an overall picture, it is hard to know which nutrients are at what levels.

Growers who follow these methods will do so because it is the only sure way of knowing what levels of each nutrient they have in their system.

The second method of adding fertilizer to your system goes a little further than the above. If you are rigid with a ten-day flush, then you can waste precious nutes.

The second way uses the 50% method. This looks very similar to the above yet it doesn’t have a set time associated with system flushing.

The way this works is to measure your reservoir when you first fill it, and record the number of gallons. Check your levels every couple of days and top up with plain water. You proceed in this manner until you have replaced 50% of your starting number of gallons.

Once you have replaced half the liquid, you then cease topping off your tank and let the solution levels run down until they reach the top of your water pump.

At this stage, you can clean and drain your tank, and then add a new batch of nutrients or fertilizer.

One tip when using this method is for flood and drain systems. Because there can be salt buildup, it is advisable to flush your growing pots, growing medium and also your plants to rid them of accumulated salts.


As you can see from the information above, you will in act fact only fertilize your system once at each stage of growth. This, of course, will vary depending how long it takes your plants to grow from seedlings until harvest.

Both of the methods above may be suitable for many growers, however, the 50% method will cut down on waste. However, as the nutrient solution will be weakened by half, you may begin to see slow-growing plants showing signs of nutrient deficiencies toward the time you are almost ready to flush your system, and add a new batch.

Finding the method, which is best for your garden, is straightforward, and monitoring pH and EC levels can be the easiest ways to make sure you have this control. One final note is that you are better to add less rather than more when it comes to hydroponic nutrients.

Related Questions

Why should I not add more nutrients when I top my system up with water? The reason for not adding more nutrients when you top up with water is that the concentration becomes stronger. When this happens, certain compounds become toxic to plants.

How does weather affect nutrient requirements? Plants will have higher nutrient requirements in the colder times of the year; they will also have a lower requirement in the hotter months when they need to take up more water. However, if your grow room is always the same temperature, or never falls below a set temperature, then this scenario should never occur.

What Size Pump Do I Need For My Hydroponic System?

When you are thinking of building or purchasing a hydroponic system, the most crucial bit of equipment will be your water pump. However, just selecting one that you think will be sufficient isn’t the way to go about it.

There are some things to consider as every system is different, and to go along with this, you will have a variety of pumps which to choose from. Here we will look at the different types of pumps, and how you can ultimately choose the right-sized pump for your system. Although it is easier to calculate the size of pump required than many people think, the one factor many tend to overlook is the type of system they will be running.

The only easy answer, before looking in depth at the variables is to purchase a much larger pump than you require. You can reduce the rate of flow, yet a pump which is too small, can’t pump more water than it is capable of doing.

Types of Water Pump

Before knowing the size of pump you will need, you will need to know which type you will possibly be using. The two most common will be either submersible or inline pumps.

Inline Pumps

An inline pump will sit outside your reservoir. Because of this, they are usually cooled by the air and will be noisier than submersible models. This type of pump is generally more powerful and used in commercial or larger gardens. In many cases, they will be rated by HP (Horse Power) and not by the GPH (Gallons per Hour) of water, they can move.

Submersible Pumps

These sit inside your reservoir and will be almost silent with the water acting as noise insulation. While the water cools them, it does mean heat will seep into your mixture, so making sure this doesn’t warm your nutrient mixture too much will be crucial.

While they lack the power of inline pumps, the majority of home gardeners can make use of these, as the GPH is more than sufficient in most cases.

Sizing a Hydroponic Water Pump

It can be straightforward to find the right sized pump for your garden. Here we will show the simple formulas you need to use for calculations. However, there are three basic steps you need to follow to find out the right pump for your needs.

In summary, these steps are:

  1. Calculate your GPH for the amount of water you will be pumping
  2. Measuring the head height of your system
  3. Using both of these values to determine the right sized pump

Before looking at the steps in-depth, here is a table with the different systems, and how much water you can expect to be pumping.

System Type Flow Rate (GPH) Examples
Dutch Buckets/ Bato Buckets2 gallons per hour per bucket
Flood & DrainFlood table volume in gallons x flood frequency per hour
DWCReservoir volume in GPH
Towers2 GPH per tower
NFTBetween 4 & 6 GPH per trough

Steps for Sizing Hydroponic Pumps

Step #1: Calculating Your GPH

When you begin looking at purchasing pumps, they should all come with a GPH. This will give you the number of gallons your pump can move every hour. Be sure the reading is GPH and not in metric as this will throw off your calculations.

When finding out your total GPH, this will be the flow rate multiplied by the number of units at that flow rate. A good example being a Dutch bucket, if this is 2 gallons per bucket, then you multiply this by the number of buckets in your system.

One thing to note is you will need to be sure any tank holds a little extra water. The last thing you want is a pump to start running dry. This will be the first thing, which kills it.

Step #2: Measuring Your Head Height

Nearly every hydroponic system has the growing medium and plants placed higher than the level of the nutrient reservoir. This means water needs moving upward.

While pumps can move water, they need to lift it high enough to reach the system, and they need to do so efficiently. This is where the head height comes into force.

The head height is the distance from the highest point the water will reach in your system, and the level of your water in your tank. While there is no calculation for this, you only need to measure the distance.

It is worth remembering that water levels drop, so making sure any head height can be comfortably covered by the pump of choice to allow for this variance.

Step #3 Combining Your Head Height and GPH

This step is the hardest out of the three. Without going through pump models, it can be hard to fully explain how they will read. When you have these readings, you will see how high your pump can pump water to overcome gravity, and the point where it is of little use and the water can overcome the pump.

GPH will decrease with height, so you need a pump that has the highest head height for your budget. When looking for a pump, never go by the GPH which is advertised, on the carton. Once you go above one-foot in height, then your effective GPH will begin reducing.

Nearly all pump manufacturers give separate readings because many of these pumps may be used in ponds for water features or for fountains. This means they will be designed with high head heights in mind.

Generally speaking, a pump which has the highest PSI, can overcome the back-pressure where water tries to flow back through the pump using gravity.

Hydroponic Pump Considerations

With the above, you can see how straightforward it can be choosing a water pump for your system. As we saw, many of these pumps are made for pond use, although there are many manufacturers who are now packaging these specifically for hydroponics use.

To be safe, it is better to take your reading from the above calculation and double it. This gives you lots of leeway in lack of pump performance and you have the chance to increase the size of your system without purchasing another pump.

You can reduce flow to meet your needs, and an NFT or drip system being good examples. These don’t need lots of water volume, they just need a steady trickle of water delivered around the clock, or for the designated feeding times.

If you need to reduce flow, many pumps have restrictors built it. However, if your pump doesn’t come with one of these, you can make a quick adaption to your pump so it cannot pump the full amount of water.

Adding a “T” connector to the outlet end of the pump and under the water level will divert some of the water back into the tank while the remainder makes its way up to your plants. You can even add a small valve to this end to fine tune the water that just passes back into your tank.


It can be straightforward to choose a good enough pump for your system. Like anything, you will get what you pay for, so purchasing a system that is larger than what you need will perform more efficiently than one which struggles to reach the head height.

Even if you look at an inline pump rather than a submersible. You still have the same considerations to make and you still have the same figures to work with. Pumps may be the most crucial piece of equipment in your system, yet they are not the hardest to purchase.

Related Questions

What happens if my tank is a distance from my system? If your tank is not directly situated under your system, you will need to allow for the length of hose connecting the two. The longer your hose, the harder it will be and the GPH will reduce as a result. Unless your tank is a considerable distance away, you can choose a pump which is double the performance for what your require, and you can allow for up to 30% loss of performance as a result.

What number of watts should my pump be? You may find you have a juggling act with this one. Larger pumps will be of a higher wattage, and if they are being run 24/7, they will cost more to operate. Finding a pump with the smallest wattage, yet still delivering the GPH you need will save you money in running costs.

What about pump timers? If your system isn’t running 24/7, then you will need the use of a timer. Flood and drain are set to fill at regular intervals. Using a good timer to control this means your plants get sufficient feeding when they need it. You can find a good timer in these instances, and because of this, it will allow you to have a higher performing pump because you are only running at set times throughout the day.

Do LED Lights Work for Hydroponics?

Hydroponic Grow Light

Whether if you are just getting interested in growing with hydroponics or you are a veteran grower, you may be interested in trying LED lights for your system. LED lights are a more popular light source and are relatively affordable for the number of benefits that they offer.

There are plenty of different kinds of lighting for hydroponic systems, and each has their own unique benefits and downsides. The next “Big Thing” is LED grow lights, but how much of this is marketing and hype, and how much is it true about these lights.

To find the underlying cause of the question, we look at everything there is to know about LED lights, and to see if they are the best choice, or they have a specific use, and there are better options available.

LED Lighting Advantages in Hydroponics

Before you look at this kind of light source as a good option for hydroponics, it is worth looking at this kind of lighting rig in comparison to other lighting fixtures. It is these after all that LED lights needs to be better than.

Here are the main areas where LED’s have an advantage over fluorescent or incandescent bulbs.

  • LED’s use less energy
  • LED’s run much cooler
  • LED bulbs are more durable because of their solid state
  • LED lighting fixtures are smaller
  • An LED lighting fixture can run longer  

One final area where there is a difference between LED’s and other bulbs is the luminous efficiency. When you compare fluorescent and incandescent, LED delivers a much higher ability to produce visible light. This equates to a light, which is more efficient at producing more visible light per unit of power that is input.

One thing to note here is that just because there is more visible light doesn’t mean that it is better quality light.

Here are the full advantages of LED lights in more detail.

  • Fast Harvest Cycling: You can use LED’s around the clock without affecting the temperature of your grow room. When growing indoors, your plants will grow by the conditions you dictate. You can change the light hours, the red light wavelength among other factors
  • Energy Savings: LED’s consume around 60% less energy than a conventional lighting system to deliver the same light. Because of this, they are cool in operation. This has the effect of not warming your grow room where you require additional cooling.
  • Adaptable Wavelengths: With LED’s you can regulate the light wavelengths. You can tailor these to your plants requirements so they can photosynthesize. LED’s deliver the precise spectrum of light plants require. LED’s also deliver a full spectrum of light, and you can turn off some wavelengths in some models.
  • Extended Lifespan: An LED bulb can last as much as 50,000 hours, they last so long in fact, and it is often the control unit that stops working long before the bulbs. These can be easily changed if this does happen.

Disadvantages of LED Grow Lights in Hydroponics

It is unfortunate, a lighting system, which comes with so many advantages, has to come with some disadvantages at the same time.

  • Higher Purchase Cost: LED’s do cost more to purchase in comparison to conventional lighting fixtures. This is slowly changing, and there will be a point when they are equal in price.
  • Directional Light: LED fixtures throw light out the same way as flashlights do. This is directional, so they tend to cover smaller areas than conventional bulbs.
  • Light Pollution: The blue light of LED’s adds to light pollution problems.
  • Can’t Handle Heat: Although LED’s don’t generate heat, they are not very good at handling heat from other sources. As a result, you can find they burn out faster than they should because of external influences.
  • LED’s Age: LED’s do last much longer than conventional bulbs; however, as they get old, they can change color. This also weakens their effectiveness for delivering the ideal light to your plants.
  • Growth Results: This is the determining factor of any grow light system. There has been a lot of discussion about the overall growth results using LED’s. Manufacturers claim a 300w LED lighting system compares to an HPS setup of 600-1,000w, yet growers are proving otherwise. For a one light setup, they are not as effective, and are better suited to the vegetative stage of growth. T5 tubes are proven to perform better when growing staples crops such as basil or lettuce, etc.

Mistakes Growers Make with LED Lighting Fixtures

As we can see, when using LED’s in the right scenario or the right phase of growth, they can be effective. Even if it means purchasing two different lighting fixtures, the costs can balance themselves out and help to deliver better results.

However, there can be instances where these lights are harmful to plants when not used as they are intended. Here are some of the top mistakes growers make when using any lighting system, and not just limited to LED’s

  • Overheating Your Plants

This doesn’t happen so much with LED’s, yet it is something to be wary of. When lights are too close, the nearest leaves will begin to dry out and turn a brown color. This will be similar to nutrient burn, yet it will be caused by heat from the bulbs. This problem is more common with HID lamps rather than tubes or LED’s.

  • Not Delivering the Right Amount of Light

For any garden that utilizes grow lights, there does need to be a calculation of the grow bed and the lighting system which will be delivering the light. The LED’s you have over your garden need to deliver more than 32 watts per square foot of growing space. This is a bare minimum, and recommendations of 50w or 80w per square foot are better for optimal results. Growers often choose underpowered lights when they are beginning.

  • Not Setting Lights at the Correct Distance

This can be a recurring problem in a couple of ways. Either growers place lamps too close or leaves suffer. Alternatively, they place the lighting fixtures too far from the tops of the plants, and the right amount of light doesn’t reach the crops underneath. While there isn’t a set distance, where lights need to be positioned, best results are often seen with; LED’s which are placed between 12 to 18 inches above the tops of plants.

  • Purchasing Cheap LED’s

Not all LED lighting fixtures are made to the same standards. While they can be expensive, this doesn’t mean a cheaper model will be as effective. Cutting corners with any lighting fixture never leads to great results. LED lights are no different, and to get healthy plants, you will need to be sure they can deliver the full spectrum of light.

  • Not Adjusting Lights

This can affect plants in numerous ways, yet forgetting to raise lights as plants grow can lead to lack of growth on the outer parts of your grow bed, or even worse, the central plants can be burned. This isn’t a problem with LED’s, and you will probably find the outer plants are not growing, as they should.

One problem which is often overlooked doesn’t have any symptoms in the beginning such as leaves turning brown, or plants are not growing very quick as they are receiving the wrong light. This problem is when growers switch from HID lamps to LED’s and accidently end up over-watering their crops.

HID’s throw out lots of heat and infrared light, this means plants can be taking up lots of water in compensation. LED’s don’t throw out heat, so if feeding schedules are set in compensation for hot areas, then plants will be over-watered if these schedules are not adjusted.

One thing to note is that manufacturers know all too well how long LED diodes will last for. They may release hydroponic lighting products, which they know have a limited lifespan before they release a new improved product. Growers may have a light, which can last for thousands of hours, but the surrounding pieces of the fixture are made to last half that period.


LED’s can be a great addition to hydroponics grow rooms. However, for a one stop solution that takes all the plus points of the lights, they are let down by the downsides. While this doesn’t make them a bad light in comparison to conventional bulbs, they are just not ready to be overall replacements.

This is truer in larger gardens where gardeners need a good spread of light. LED’s can help reduce energy bills for the period HID lamps are not required, and then plants can get the boost in growth that these HID blubs still manage to deliver.

A dual setup for lights can be a win-win situation for a grower. However, generally, the answer about LED lights working for hydroponics is yes, as longs as growers don’t expect miracles which are often used as part of the marketing for these new lighting fixtures.

We’ve got a full guide covering grow lights which will teach you everything you need to know to help your plants grow big and strong!

Related Questions

How many lumens do LED’s throw out? If you compare the lumens, which LED’s can output in the range from 450 all the way to around 1300. They can do this using half the wattage of CFL tubes.

What are integrated LED’s? An integrated LED lighting system is where all the LED diodes are built into the device. In many cases, these cannot be repaired if anything goes wrong. The reason some manufacturers do this is the life of LED’s in general. They can release new products in the hope individuals will replace their LED well before the bulbs stop working.

How to Keep Water Cool in Hydroponics: 8 Easy Ways

One thing growers should never overlook in their hydroponic system is the temperature of their nutrient mixture. As soon as the temperature reaches over a certain point, the solution can’t hold the dissolved oxygen as long.

Add to this, when there are unhealthy root masses mixed with these temperatures, it creates the perfect place for pathogens like root rot to take a foothold. To combat these problems, you need to make sure your nutrient solution remains between 65 and 75 degrees.

Here we will look at ways to cool your hydroponic reservoir and solution. While these can make the difference, some of these methods come with their own downsides when in use.

In summary, according to other sites such as NoSoilSolutions and Epic Gardening, here are the main eight ways to cool a nutrient reservoir.

  1. Keeping your reservoir in the shade
  2. Paint your reservoir to reflect light
  3. Increasing the size of your reservoir
  4. Top off your nutrient solution
  5. Bury your reservoir in the ground
  6. Making a swamp cooler
  7. Making your own cooling coil
  8. Purchase a water chiller

How Can I Cool My Hydroponic Reservoir?

Here we will take an in-depth look at the above methods. The first couple of entries in the list should ideally be done as a matter of course. Aside from controlling temperatures, they help prevent light entering and the growth of algae.

1# Keep Your Reservoir in the Shade

Any grower should be doing this one thing by default. Being able to minimize the amount of light which falls on your reservoir will help prevent it from warming up in the first place. Aside from this, you also need to be sure no light is entering your reservoir, this will warm it quicker, and it does allow algae to form along the water line.

2# Paint or Insulate Your Reservoir

There are two things you can try in this solution. The problem doesn’t just come from tanks, which are in a warm environment. Nutrient tanks can catch the heat from grow lights. As soon as this starts to hit the dark colors of your tanks, then the solution inside begins to warm up.

Solutions for this are to either paint your reservoir a light color as a way of reflecting the light and the heat, or you can cover your tank in a reflective insulation material. Even regular insulation can be enough to help maintain cooler temperatures in your tank, yet reflective insulation comes with an added benefit.

Once your grow lights hit the top of your tank, this reflective material bounces light back, which can reach the undersides of your plants.

In summary, here are things to know about painting or insulating your tank:

  • Don’t choose a light plastic to save on painting, this can lead to algae growth when light passes through
  • Dark plastics absorb more heat while light colors reflect
  • Reflective insulation helps cool, and throws light back onto your plants

3# Increase Your Reservoir Size

Depending where hydroponic gardens are located, this often dictates the size of reservoir in use. For small gardens, growers tend to go for a smaller tank to match, however, these warm up quicker than larger reservoirs.

If you add a larger reservoir, your nutrient mix becomes more stable. This doesn’t just mean you can keep lower temperatures, but also it helps balance pH levels, PPM and other concentrations in your mixture.

  • Small reservoirs fluctuate easier
  • Large reservoirs add stability for controlling temperature and other factors
  • PPM, EC and pH are easier to control in larger tanks

4# Top Off Your Solution

If you need a quick fix, then this can suffice to drop your temperatures down a few degrees on hot days. This method shouldn’t be used too often because either you will be diluting your nutrient mix, or you will be using more nutrients than you need to.

It is better to use this method in case of emergencies because if you have temperature fluctuations, they will always be there, and this method doesn’t do much to eliminate them.

  • Not to be used all the time
  • Add cooler solution slowly so not to shock plants

5# Bury Your Reservoir

This method only works if you have an outside hydroponic garden. You can prevent several problems with your nutrient tank by burying it. This helps to maintain cooler temperatures but using the natural coolness of the earth, and it is sure to stop any light from entering your tank.

The main things to remember with this method are you may struggle when you come to flush your tank between growing. If it is already under ground level, you may not have a suitable drain point.

6# Make Your Own Swamp Coolers

Swamp coolers are effective, and very simple to make. All it requires is to take a suitable fan and blow this across the top of your nutrient solution. As a result, you may see temperature drops of around 5 to 10F.

The downside to this is you can be topping off your reservoir more often to compensate for evaporation. Second to this, your EC and PPM levels will rise that will require continual adjustment. You may also find using this method, you are allowing light into your tank.

7# Make a Cooling Coil

While these can be effective, they do take more work and they have the downside of wasting water. To make one of these, you can take copper or stainless steel tubing and form it into around 20 coils. This will then sit inside your reservoir with a hose connected to both ends.

One fits on the faucet while the second drains. In operation, the water trickles through the tubing and will pull heat from your reservoir into the liquid inside.

  • Wastes water
  • Can offer unlimited cooling at a cost
  • Doesn’t need any power

8# Buy a Water Chiller

One of the most efficient ways to cool your reservoir is to purchase a water chiller. These deliver a hands free approach and give you lots of control. These do become more cost-effective if you have more than a couple of tanks where you need to control the temperatures.

These water chillers can be a hefty investment, and they do consume electricity for their operation. There are varying sizes so scaling up to any sized garden can be straightforward.

  • Most expensive option
  • Still requires water pumps
  • Can be a set it and forget it solution
  • Ideal for larger gardens

Ideal Hydroponics Temperature 

Plants thrive better when they are in a constant environment. While nutrient temperature can fluctuate, the main problem can stem from the grow room itself.

For ideal temperatures for good plant growth, the surrounding environment should be around 70 to 80F. For optimum root growth, the ideal temperatures of the root zone should be around 66F. 

Once the temperatures are above these, then stress starts to show in your plants. Heat stress can cause plants that are spindly in the early stages of growth, and mature plants can fail to fruit or flower correctly.

Most of the above methods focus on cooling a nutrient mix which is already warm. However, to have the perfect grow room will mean that your tanks temperature doesn’t climb in the first place.

Here are some of the best ways you can help maintain your grow room environment.

Air conditioners: This works as well as a water chiller, but for the surrounding environment. The environment will warm because of grow lights, or any natural light, which spills in through windows. You can purchase window type air conditioners that are ideal to cool your grow room enough without breaking the bank.

Relocate or Insulate Grow Rooms: The biggest culprit for tanks heating up will be your grow lights. If your grow room faces the south, or your grow room is under a hot roof, you may be fighting a losing battle with your tank temperatures.

Insulating your grow room can prevent hot weather having an impact. Additionally, if you can move a grow room into the basement, you will find it is naturally cooler than above ground level.

Increase Humidity: If your grow room suffers from low humidity, then your plants will take up more water to keep cool. This is where your tank levels drop faster and thus warm up quicker. Misting your grow room can keep plants and the surrounding areas cool, and as a result, your nutrient mix will remain stable.

Improve the Air Flow: Plants require good air circulation for healthy growth. This will also help prevent your nutrient mix from warming in the first place. Plants will benefit with circulating air, and it stops pockets or warm zones from forming around the grow room.

Run Lights at Night: One-Way of cooling a grow room which many growers often overlook is using their grow lights at night rather than in the day. Using supplemental lighting at night not only offers cheaper electric in some cases, but a grow room will be cooler at this time. The overall temperature of the room may not reach a level that will push your reservoir up to the higher limits to cause problems.

However, doing this will mean you need alternative counter measures in the day to cool your grow room. This will depend on the location as to the extent you need to go. If your grow room has access to natural light, it can be just a matter of extra shading, additional misting and fog to keep lower temperatures.

Calculating the Size of Water Chiller

One of the most crucial factors when choosing a water chiller is how well it will perform on your system. It isn’t just a matter of choosing one and expecting it to cool sufficiently. When it comes to the sizing of your water chiller, the following method allows you to determine the size of chiller unit that is sufficient for your garden system.

  1. Calculate your system volume – this includes all buckets and tanks
  2. Run your system with everything turned on – all grow lights, fans, etc.
  3. When your grow room has reached its max temp, take a reading before cooling your system using ice packs or frozen plastic bottles of ice.
  4. When your system mix cools, remove the ice and run for another hour.
  5. After this time, take the water temperature
  6. Subtract your ending temp from the starting temp
  7. Use the formula to find the minimum BTU required.
  • System volume: 80 gallons
  • Desired Temp: 65F
  • Running Temp: 76F

Formula: 80 x 8.34 x 11 = 7,339 BTU (gallons x weight of water x temporary difference).

A water chiller should run around 20% above your BTU requirement minimum to counteract performance loss.

Pros and Cons of Using a Water Chiller in Your Garden

Like many things for your hydroponics system, there are pros and cons of using a water chiller.

Pros of Hydroponic Water Chillers 

  • Cooler temperatures enable your solution to hold a higher degree of dissolved oxygen. This is the key basis of increased nutrient uptake and explosive root growth.
  • Highly oxygenated environments, which come with cooler temperatures, can help deter pathogens from taking hold.
  • A cooler reservoir will act as a heat sink in your grow room. This can draw ambient heat and help to cool the whole room

Cons of Water Chillers in Hydroponic Gardens

  • Expense is one of the largest primary cons for a water chiller. Although you can find affordable models, it can still be a cost that many growers can’t justify.
  • Noise – in operation, these will sit outside of a reservoir like air pumps. They will make the same sort of noises as air conditioning units.
  • Heat: Water chillers do generate heat when they cool water. Either they require ducting to transfer this heat out of the grow room, or they have to sit outside the grow room to not introduce more heat.

Why Do Roots Need Cool Temperatures?

Root zone temperatures affect overall shoot growth. Not only this, the impact from the root zone temperature will have more of a bearing on development and overall growth than the ambient air temperatures.

This occurs because the tissues of the roots send messages to the shoots. This will have an effect of how the shoot reacts to the environment. Growers see that there are many functions that occur for the plant in the roots, and thus, the root zone temperature becomes crucial.

Such is the effect of this, even thirty minutes of heat buildup in your nutrient mixture and in the root zone is enough to have a negative effect on your plants. One thing to note is that a daily cool average isn’t sufficient to counteract this.

As soon as your temperatures rise above 86F, then crops, which are sensitive to heat, will quickly falter such as lettuce or parsley.

When you look at something such as lettuce, the cooling of your nutrient reservoir does allow these crops to face higher than usual/ optimal temperatures above the surface.

While there are many biological happenings because of cooling roots lower than the ambient air temperatures, it is easier to know it reduces heat stress in the leaves of plants.

Root Zones and Different Hydroponic Systems

Cooling your nutrient solution to the optimal temperature isn’t all the equation. The remainder comes from the types of system you are running.

The root zone temperature needs to remain the same all the time. The cool mixture has a big influence on this, yet the system type and how it is built can affect this dramatically. A good example being the only system, which will have the same temperature root zone as the nutrients, will be a DWC system.

The roots are in constant contact with the solution. In all the other types of system, there is a degree of separation between the root zone and the reservoir.

A good example of how this can affect plants is in an ebb and flow (flood and drain) system. As your cool solution rises in the flood tables, the plants gain the advantages of oxygenated water and the roots are comfortable because of the lower temperatures.

However, things change as the cycle stops and the solution begins to drain back into the tank. Warm air from the grow room can be pulled through the growing medium as the solution drops. If the environment is warm, it can heat up your root zone considerably until the next flood cycle.

Unless you have a good means of cooling your solution, this will transfer heat back into your tank and thus warming it with each fill and drain cycle. Depending on your cooling solution, you may find that this is insufficient and as much as you are trying to cool your water, it increases in temperature regardless.

Not only will your water increase in temperature but also the root zone can be at a damaging temperature between your flood cycles.

Size of Your Hydroponics Reservoirs

One of the first things to be sure of is that you have a large enough reservoir. Rather than just being large enough for the size of system, you have, you are better to have a much larger one than you require.

Hydrotek, who are one of the largest names in hydroponic equipment recommend the following for reservoir sizes:

  • Small plants – ½ gallon for each plant
  • Medium plants – 1 ½ gallons for each plant
  • Large plants – 2 ½ gallons for each plant

Hydrotek recommends you choose a reservoir that is at least double the size.

You also need to consider how thirsty your plants will be. This can use your water and nutrients faster, such as is the like of tomatoes in comparison to lettuce.

This will use your mix faster and thus cause a warm solution once the level starts to drop.

Using all the above information can help to maintain cooler temperatures for your nutrient solution. However, if you find your grow room comfortable for yourself as you are working in that environment, then you are halfway to knowing how it feels for your crops.

9 Flowers to Grow in Hydroponics (with pictures)

Why Hydroponic Flowers?

Flower gardeners spend countless hours tilling and tending to the soil. This makes flower gardening appear hard work, and if it takes this much effort, then why would you consider growing plants in a hydroponic system?

There are in fact several benefits and advantages flower gardening in hydroponics has over soil growing.

Results come much faster, you can tailor your nutrients to each plant species, and you have no weeds, insects and less disease to contend with. This delivers an up to a fifty percent faster growth in flowers, and yields are much greater than compared to soil growth.

With this in mind, you can now grow flowers all year round, and which can be expensive to purchase when out of season. You can also have as many cut flower displays around your home as you wish.

Before an in-depth look at each flower, here are nine of the best flowers you can grow in your hydroponic system.

  • Peace lilies
  • Hoya
  • Snapdragons
  • Dahlias
  • Rex begonias
  • Carnations
  • Orchids
  • Petunia
  • Zinnia

Top 9 Hydroponic Flowers

Peace Lilies

As an indoor plant, the Peace Lily can be one of the easiest to care for. You need the right growing conditions though. These tropical flowers are part of the Spathiphyllum family and are recognizable by their dark green leaves and white flowers.

While we can grow these in a hydroponic system, they don’t like to be over-watered. They can in fact be more tolerant to under watering than being around too much water. Peace Lilies, which grow in a hydroponic system, are often adapted versions where they send out small roots to absorb water. Here you can see Peace Lilies grown in small aquariums.

Many growers often wait until leaves show signs of wilting before watering, this can prevent over watering. If they are over watered, it can lead to root rot, and the plant will suffocate.

Tips for Growing Peace Lilies Hydroponically:

  • Peace lilies like a temperature range of 68 F to 80 F. This will deliver optimal growth.
  • Clean leaves and you can reduce the risk of pests. The most common being aphids and mealybugs. 
  • Be sure to keep your lilies in warm draught free areas
  • The ideal pH range would be from 5.6 to 6.5.

Fun Facts about Peace Lilies

  • Despite the name, peace lilies aren’t related to true lilies.
  • NASA studied Peace Lilies because of their air-purifying abilities. They show them to be effective at removing formaldehyde, carbon monoxide and benzene from the air.
  • All parts of the Peace Lily plant can be poisonous as they contain calcium oxalate. If ingested in sufficient quantities, this can cause respiratory and stomach irritation. You should keep away children and pets from Peace Lilies.
  • Indoor varieties can grow up to around 16-inches while outdoor types can grow up to six feet in height.


Hoya plants are better known as the wax plant. These are a vine, shrub, and evergreen perennial creeper. When flowering, they adorn some gorgeous star-shaped flowers with leaves that can either be smooth or feel like soft felt. Hoyas are very low maintenance, which is one reason they are so popular for a houseplant.

Hoyas are another plant that doesn’t take to over-watering. Depending on the growing conditions, Hoyas can have flowers 1/4 inch in diameter up to 4” in diameter. There are many different Hoya’s choosing from, 200 species to be exact, and they all boast their own unique colors and shapes. So choosing the hoya, you desire is half the battle to growing and nurturing them.

Tips for Growing Hoya Hydroponically:

  • When pruning, avoid cutting the long tendrils, these are where flowers develop.
  • Hoyas require adequate drainage so they are not accidently over watered.
  • Likewise, this tropical plant can absorb moisture through the air, which is what makes it so low maintenance. Consider a system that uses humidity.
  • Hoyas prefer bright indirect light. What they don’t like are dark corners or direct sun. Hoyas can handle cooler weather from 50 degrees F up to warm temperatures of 77 F.
  • Maintain a pH range of 5.0-6.5

Fun Facts about Hoya

  • Even though there are over 200 different variations of hoya, you won’t find blue, purple, or violet colors represented.
  • Some species of Hoya have a Crassulacean Acid Metabolism
  • Each cluster of flowers on this plant can contain up to 40 individual flowers.


The botanical name for Snapdragons is Antirrhinum and means ‘like a snout.’ This plant is native around Europe and North America. They have become a popular favorite because of their vibrant hues, and their flowers that resemble a dragon-like mouth when pressed.

Mature Snapdragons can grow from 6 inches up to 48 inches depending on the variety, and the growing conditions. This means you may require some support for your plant, and the growing medium will need to hold them firm. Perlite is often the more common.

Even when grown in a soil-based medium, it’s common to grow flowers like snapdragons indoors before transferring them. This is because they are very sensitive to weather conditions. There are over 18 different snapdragons, and all these deliver bloom colors of pink, yellow, red, white, purple, peach, orange, and bi-colored.

Tips for Growing Snapdragons Hydroponically:

  • Snapdragons need adequate watering but not standing in moist conditions. Your growing medium will need to dry between cycles.
  • Snapdragons are perennials that require full sun with only occasional shade.
  • They prefer pH levels between 6.2 and 7.0.

Fun Facts about Snapdragons

  • Often called Dog’s Mouth, Lion’s mouth, Dragon flower and more depending where you are.
  • The leaves and flowers have some anti-inflammatory abilities.
  • We can apply them as poultices for ulcers or tumors
  • When snapdragons are mixed with tea, they can help detoxify the blood and increase urine production to clear the body from waste.


Dahlias are closely related to sunflowers, daisies, zinnia, and chrysanthemums. We know dahlias as octoploids, which means they have eight sets of homologous chromosomes.

If you grow these in your hydroponic system, you will need to be sure they have lots of space. As you are planting in a container, this does need to be at least 12 inches deep. Some varieties require deeper which can rule these out of your system. Dahlias grow half as wide as they do tall; so lateral space is important.

Dahlias like to have lots of light, and they are thirsty feeders. Your growing medium should dry out between watering schedules, and you will need to monitor your tank levels. Once planted, you will need to fertilize with a 10-10-10 NPK mix.

Tips for Growing Dahlias Hydroponically:

  • Dahlias need constant light to bloom and grow. It’s recommended that they receive a minimum of eight hours daily.
  • Dahlias are spring-planted flowers. This means they prefer warmer temperatures. Stick to a minimum of 60-degree temperatures and a maximum of 72 degrees.
  • If you prefer your dahlia’s being shorter and bushier, cut the center shoot above the third set of leaves to encourage shorter growth
  • Dahlias need a pH level range of 6.5-7.5.

Fun Facts about Dahlias

  • There are over 20,000 cultivars of Dahlia.
  • It’s the official flower of Seattle, WA although they are not native to the area.
  • Dahlias were known as a vegetable in the 18th century but later became more known as flowers.
  • They named them after 18th-century botanist, Anders Dhal.

Rex Begonias

Rex Begonias are unique in every sense. We do not know them for their flowers, rather their leaves and foliage. This is colorful and can be overlaid onto the thick fibrous leaves. It is possible to find a myriad of color options from maroon, lavender, gray, silver, pink and reds.

Rex Begonias were first noted in 1856 when a shipment of orchids to England included the mysterious plant that no one could identify. This plant is tropical and native to South America, Africa, and Southeastern Asia. There are over 1,831 species of begonia, each with their own intricate and original leaf appearance.

Tips for Growing Rex Begonias Hydroponically:

  • Since Rex Begonias are tropical and subtropical plants, they are native to jungle types of environments. It is this, which makes them great as houseplants as they require little light and prefer shaded and cool areas.
  • These plants can grow from 12 inches to 24 inches in height. With leaves growing an average of 4-5 inches, it is also crucial to be wary of outward growing space requirements.
  • You can tell when the Rex begonia has received too much light, as the foliage will turn brown.
  • Stick to temperatures between 60 and 85 F.
  • Maintain a pH range of about 5.7 to 6.2 for optimal growth.
  • Rex Begonias like humid conditions; this may mean misting their leaves early in the day.

Fun Facts about Rex Begonias

  • You can propagate Begonias by using stem cuttings.
  • The Begonia stem is actually designed to store water so that during dry periods of the year, the Begonia remains hydrated.
  • Begonias only have a life span of about 2 to 3 years on average. They can live a few years longer if they live in an excellent and nurturing environment.
  • The juice of the begonia plant is thought to relieve headaches and as an eyewash for conjunctivitis.


Carnations are by far one of the most popular flowers to be grown in hydroponic systems. They are also one of the most commercially grown flowers because of the number of individuals who have them as indoor decorations.

Carnation petals have a fantastic aroma and make any room feel inviting when they have a presence. On top of this, the leaves can also be edible and are sweet to the taste. Growing from cuttings is often the preferred method. If propagating in soil, it can take between two and three weeks when from seeds. Hydroponics can speed up this process.

Tips for Growing Carnations Hydroponically:

  • Make sure carnations receive 5-8 hours of uninterrupted sunlight daily.
  • Carnations will thrive the best with a pH level of around 6.0.
  • Rockwool starter plugs are ideal for seedlings up to 4 to 5 inches in height, at this stage, we can transplant them.
  • Keep the temperature range of 65 to 75 F.
  • Ebb and Flow, Dutch bucket or DWC systems are best suited to Carnation growth. They will need support when they grow.

Fun Facts about Carnations

  • Carnations are believed to be native to the Mediterranean area. However, because of extensive cultivation over the last 2,000 years, no one knows for certain where their origins lie.
  • Annual carnations, border carnations, and perpetual flowering carnations are the most common types that are grown.
  • Greeks and Romans used carnations in garlands.
  • Carnations are a bisexual flower. This means they have both male and female reproductive structures that inhibit better growth and production.


For many people, Orchids are among the most beautiful flowers there are. Around the globe, they are a gardener’s favorite thanks to their woody-thick roots and colorful blooms. One thing many lovers of this plant are unaware of is, around the world, most of these are actually grown in hydroponics systems.

The reasons for this that where these Orchids grow in tropical climates, they latch themselves to tree bark or in between rocks. As the climate can be wet, it exposes them to sufficient watering from the rain. Once the rain stops, it exposes the roots to the air and can have plenty uptake of oxygen.

Add to this surrounding organic matter which rots, and they have a steady stream of nutrients. This is hydroponics in its purest form, and it is what makes growing Orchids in a proper system so easy and so rewarding.

Tips for Growing Orchids Hydroponically:

Fun Facts about Orchids

  • The flowers on orchids can survive for up to 6 months.
  • Out of the millions of seeds that orchids produce, less than a hand full will develop into a plant.
  • Orchid seeds do not contain endosperm, which is what they need to provide nutrients during germination. Because of this, they require symbiosis with fungi to achieve germination. Germination of orchids can sometimes take up to 15 years.
  • They use orchids in the perfume, spice, and medicine industries.


These popular South American flowers can withstand hot climates. They are widespread around many gardens in borders and in pots. There is an almost endless range of colors available, which is one reason they are gardeners favorites.

Most Petunias you see for sale are hybrids and are developed for specific purposes. As they grow, they can reach anywhere from six inches to four feet in height and have a spread of up to three feet. This means you will require support and lots of spacing to avoid overcrowding.

Tips for Growing Petunias Hydroponically:

  • Petunias need at least 5 to 6 hours of full light to thrive at their best.
  • When fertilizing Petunias like a balanced mix of 8-8-8, 10-10-10 or 12-12-12.
  • In germination, your Petunias will prefer warmer temperatures, however, once they have germinated, move them from this warm area so they can grow in cooler areas. They prefer cooler temperatures between 57 and 65 degrees Fahrenheit.
  • Petunias like pH levels of 6.0 to 7.0.

Fun Facts about Petunias

  • Petunias are an annual plant, so a full life cycle takes one year.
  • Common Petunias are edible and have a sweet and spicy flavor
  • There are four groups, which all Petunias fall into. Grandiflora, Multiflora, Milliflora and Hedgiflora.
  • Petunia comes from the word “Petun” which means tobacco in Brazil. These two plants are related and can be crossbred.


Zinnia are easy to grow and are a part of the daisy family. Being native to Southwestern United States and South America, they like to grow in full sun. At least six hours of full sun or bright light are recommended to get the best of these colorful plants.

Once they grow, they can range between 4 and 40 inches in height. This means you will require some support and a growing medium that can support their root system.

Their large range of bright colors and ability to withstand hotter climates makes them popular for planting in many a garden environment. Zinnias will reseed themselves each year. When selecting from the many varieties for your hydroponic garden, you will be better off selecting the more compact varieties.

Tips for Growing Zinnia Hydroponically:

  • Keep the temperature range between 74 and 84 degrees Fahrenheit. They can grow in temperatures as low as 60 degrees Fahrenheit.
  • Zinnias like moist environments yet they don’t like to be over-watered because they can fall foul of root rot. It can cope with dry spells better than standing in water
  • Once flowers show, they can benefit from 5-5-5 fertilizer for larger blooms.
  • Zinnias prefer pH ranges between 5.5 and 7.5.
  • Zinnias like a lot of light, but they can do just well in environments that receive less than 6 hours of light minimum.
  • If you want bushier plants, you can pinch the growth tip of the plants when young. This creates shorter side branching plants.

Fun Facts about Zinnia

  • Zinnia leaves have a sandpaper-like texture to them.
  • They named them after the German botanist Johann Gottfried Zinn.
  • They can have a single, semi-double or even double layers of petals.
  • Removing dead or faded flower heads, you will see an increase in flower production. We call this dead-heading.
  • Butterflies love Zinnia’s, and you’ll find an abundance of them attracted to your garden if you plant them outdoors.

8 Easy Herbs to Grow in Hydroponics (with pictures)

It doesn’t matter if you are growing herbs for culinary purposes or medicinal, hydroponics is a great way to grow them. There are some reasons for doing so, and the first is that they grow faster. You can then add to this they come with more aroma and flavor than soil-grown counterparts can. Research even shows, hydroponic herbs contain up to 40% more aromatic oils.

Not only this, but growers can have a range of herbs growing that they could otherwise struggle to grow in their region.

These are easy herbs to grow in hydroponics:

  • Basil
  • Chamomile
  • Rosemary
  • Oregano
  • Cilantro
  • Anise
  • Dill
  • Catnip

Like all plants, herbs care about temperature, light and water. If you swing too low or too high in either direction for any of these herbs, they will end up dying. Growing herbs using hydroponics helps you to keep yielding herbs no matter the season or the weather. Hydroponic growing just takes up less space and reduces water consumption.

While all herbs can be easy to grow, here are the top eight herbs to grow in a hydroponic system. We’ll go over the basics and the benefits of each one.


Basil is a popular choice for hydroponics because this herb is ideal when used fresh to hold on to the aroma and flavor. Dried basil loses these qualities. Therefore, it’s not uncommon to see restaurants and greenhouses using a hydroponics system for their basil herbs.

Altogether, there are 150 different species of basil, but the most common are:

  • Sweet Basil
  • Genovese Basil
  • Thai Sweet Basil
  • Purple Basil
  • Lemon Basil
  • Lime Basil
  • Lettuce Basil
  • Spicy Basil

You can plant basil two ways, by germinating the seeds, or by planting cuttings, which form their roots within a week’s time. Basil is a warm-weather herb, so it’s best to maintain a temperature of between 70 – 80 Fahrenheit. Rockwool blocks are the most common medium used with growing basil in hydroponics. You can though use peat moss, coco coir, perlite and vermiculite, although these need sterilizing before use.

You should note that Pythium is a threat to basil seedlings. What is Pythium? Pythium is a fungus that will attack and spread disease against many herbaceous crops. The best way to avoid Pythium or other damping-off pathogens is to take great care with assuring your growing media surface is not too damp.

Once you come to harvest basil, you can remove the top 1/3 to 2/3’s of the upper foliage. The plant will continue to grow this back, where you can cut again. Basil can regrow up to 2 to 3 times before it’s recommended to replace the plant altogether and start fresh.

It is advisable to just cut the amount of basil you require, this saves the worry of trying to keep it in a good condition. Once you pick basil, the shelf life of basil is only a few days, so it can be better to leave it growing on the plant until required. You can check this video to see how easy it can be to grow perpetual basil in a hydroponic system.


If you’re a big fan of tea, you might like to know that you can grow your own chamomile, indoors with hydroponics. Chamomile has many amazing antioxidant properties that have been shown to lower the risk of diseases like heart disease and cancer. They also help with fighting insomnia and poor digestion issues.

Many will use a floating seed tray to help germinate chamomile seeds. After the seedlings grow to about 2 inches, you’ll want to get rid of the weakest ones so that there is only one strong seedling per cell in the tray. Germination of chamomile seeds can take up to 1-2 weeks. It’s recommended that chamomile receives up to 16 hours of light daily.

As it pertains to pH ranges, chamomile has broad compatibility. It can range anywhere from 5.6 to 7.5. Ideally, you’ll probably want to hit in the middle at 6.5 for optimal growing results. After about 8 weeks, you’ll be ready to harvest your chamomile flowers.

You can harvest the flowers by cutting up to 3 inches of the stem off and then drying them on a cloth in a shady area. You could make replanting much simpler by not harvesting all the flowers, which allows them to re-seed themselves. Store your chamomile in an airtight container in a dark and cool area for preservation. To see more of the Chamomile health benefits, you can read more here.


This Mediterranean herb is an evergreen, with needle-like leaves. The herb can dawn white, pink, purple, or sometimes blue flowers. You can use Rosemary as an aid for a wide variety of problems such as

  • Digestion issues
  • Heartburn
  • Loss of appetite
  • Cough
  • Headache
  • High blood pressure
  • Low blood pressure
  • Toothache
  • Insect repellent
  • And More

Growing rosemary hydroponically compared to other herbs can prove a much slower. You can expect a harvest time of up to 12 weeks, and the yields from seeds are always very low. Growing them hydroponically still proves much more efficient.

These herbs are sensitive to fungal infections, powdery mildew, and mites. An NFT hydroponic setup is the most ideal for this herb, and they should be exposed to temperatures ranging from 70 degrees Fahrenheit to 85 degrees Fahrenheit max.

Here are some quick tips for growing rosemary hydroponically.

  1. Keep the pH range between 5.5-7.0
  2. Humidity levels should remain average.
  3. Expose the herb to 11 hours of daylight as a minimum
  4. You can harvest 2-3 times per sowing, this can also be done all year round.


Oregano is a part of the mint family and they have used this herb for thousands of years for cooking and medicinal needs. The ancient Greeks used oregano to treat GI disorders, menstrual cramps, urinary tract infections, skin conditions, and dandruff. They have studied oregano many times for its antimicrobial activity that wards off Listeria pathogens.

Hydroponic Oregano will grow well in pH ranges between 6.0 and 9.0, for optimal results the range should fall between 6.0 and 8.0. It’s common to use Rockwool cubes to germinate the seeds which can take anywhere from 1 to 3 weeks. Some other common media are Oasis Root Cubes, Rapid Rooters, or Grodan Stonewool.

Oregano is a slow grower, and it will take up to 8 weeks after a transplant up to your first harvest. If you grow outdoors, oregano loves full sun, so when growing under lights, the exposure won’t be any different. T5 tubes are ideal to deliver the right light and to avoid drying or burning of the leaves, these should be around 2 to 4 inches from the plant tops.


From seed to harvest, you’re looking at about 50-55 days for cilantro when grown hydroponically. This herb choice is very low maintenances and doesn’t require trimming. They can be harvested partially or fully. 

If you’re a food lover, you already know what cilantro is great for. Toppings, garnishes, salsas, you name it. Although some people don’t prefer the taste of it, why? Many people experience the taste of cilantro differently. Some describe it as a fresh and cool taste while others think its tastes like soap. Here’s a scientific explanation of why that is.

A few tips for growing cilantro  hydroponically:

  • Temperatures can remain anywhere between 40 degrees Fahrenheit up to 75 degrees Fahrenheit. However, there are faster germination rates for temperatures in the 60s.
  • Watch out for powdery mildew and bacterial leaf spots, which are common with cilantro. High humidity levels and exposure to too much moisture cause these spots.

It will need plenty of water, yet it mustn’t be over-watered. Oscillating air is also recommended to replicate a sturdier outdoor habitat.


This uncommonly heard of herb has a licorice taste to it. It’s sometimes also referred to as aniseed. While Anise can fight off many common problems those, other herbs also help with like digestion issues, gas, cramps, and more.

While the licorice type taste can leave it unpopular with many, it proves resourceful for flavoring bread, sausages, cookies, and cakes. Anise seedlings are very delicate and hard to transfer, so it’s best to let the seeds germinate and grow in their respective containers without moving them. You’ll find that it can take up to 2 weeks for the seeds to germinate.

You’ll want to keep the pH range from around 5.5 to 6.5. Meeting in the middle at 6.0 is the most optimal for growth. The seedlings benefit most by having an oscillating fan gently stirring the wind for a couple of hours each day.

Anise is best harvested by cutting the plant as needed and place in a protected area free from direct sunlight in order to dry out. They can also be hung upside down. They are completely harvested as soon as the heads begin to appear brown. Store in an airtight container away from heat and light. Typically, anise will have a shelf life of up to 1 year.


Dill is a celery family herb that grows annually. It’s most commonly seen grown in Eurasia where it is used for flavoring foods. You can use fresh dill or dried dill in your recipes. When using fresh dill, the stems are not included. Growing dill hydroponically is quite simple, and it thrives in this type of growing environment.

Tips for growing dill hydroponically:

  • Place the seeds on a piece of Rockwool and press them in. Keep the Rockwool moist with water and nutrients waiting for the seeds to germinate? Germination can take 7-10 days but may happen sooner.
  • Allow for ample room to grow and remember that dill can actually grow as tall as three feet high sometimes.
  • Harvest by cutting only the leafy foliage and remove the stems when the seeds appear brown and ripe.

Culinary uses for dill include:

  • Soups
  • Salads
  • Dips
  • Casseroles
  • Pickles

Medicinal uses include:

  • Relieving stomach bloat and gas
  • Headaches
  • Cramping


If you have a cat, you might choose to hydroponically grow this herb mainly for their satisfaction and of course to provide some mild entertainment for yourself. Catnip though contrary to popular beliefs and the name itself is not just used for cats. Since the early 1700s, catnip has been documented for its ability to relieve cramps and indigestion when used in herbal teas.

Here are some tips for growing catnip hydroponically indoors:

  • You can easily propagate catnip by using leaf-tip cuttings or seeds.
  • Provide up to 5 hours of light daily.
  • Supply a steady amount of water with proper drainage. Catnip can be prone to root rot, so try to avoid too wet of an environment.
  • Watch out for mold growth, which can happen from too much misting.
  • Remove any infestations from pests, including aphids, mealybugs, scale, and whitefly.
  • Don’t let your cat come near your system!

Is it Better to Grow Herbs Hydroponically?

As always, hydroponic systems come out as top contenders do when it comes to efficiently growing plants and crops. Herbs will benefit most from the ability to receive a constant supply of nutrients and oxygen through the watering system. On average herbs, grow about 25 percent to 50 percent faster in a hydroponic environment, than an outdoor soil environment.

Additionally, some herbs are better off fresh. Hydroponic systems give restaurants, supermarkets, and commercial growers the ability to produce fresh herbs for their customers, which allows for greater flavor and cost-efficiency.

Consider these benefits of growing your herbs hydroponically:

  1. You don’t need soil. While some may love the naturistic appeal of getting your hands dirty with gardening out the sunshine, the fact of the matter is, some of us prefer not to have to go that route. Hydroponic growth really only requires water and some simple mediums.
  1. You’ll have larger yields and faster growths. As stated earlier, you will see 25 to 50 percent faster growth in a hydroponic system than you will as an outdoor crop. This faster growth means you can yield more in a smaller amount of time.
  1. Less maintenance. Most hydroponic systems run on autopilot, leaving you to only check on the pH balance and refresh the nutrient solution every week.
  1. Herbs most commonly fall prey to pests and insects. Having an indoor hydroponic system will eliminate those threats significantly.
  1. You will conserve more water. Hydroponics systems, on average, only use up to 10% of the water that outdoor soil plants require. The water gets filtered and reused continuously.
  1. You can control the environment. Is your area prone to flooding, storms, or even frigid temperatures? You don’t have to worry about this with an indoor hydroponic system that will always be in a tightly controlled environment and safe.  
  1. You need not use herbicides and insecticides, which means you can keep your herbs 100% organic and free of harmful chemicals.
  1. You will save a significant amount of space using hydroponic gardening. Systems can be customizable and even built vertically.
  1. Many claim that hydroponic gardening helps relieve stress. There’s also something about bringing a piece of your outdoor environment inside of your home. Having another living breathing piece of the environment near you can have positive effects on your mental health.
  1. It’s an all-around fun hobby to get into, what’s better than the satisfaction you get from knowing you grew a plant from start to finish, nurturing it every step of the way?  Whether or not you have a natural green thumb, hydroponics is straightforward, even for beginners!

What Different Types of Hydroponic Systems Can You Use?

Ebb & Flow Systems

Ebb & Flow systems use a water tank that is kept separate from where the herb containers are. A pump will pull the water into the herb containers so they can receive the needed water and nutrients then the water drains from the containers back into the main reservoir that is then properly pH balanced, filtered, and supplied with nutrients.

Deep Water Systems

They design these systems with the beginner in hydroponics in mind. With the use of a small pump, the water in this system remains oxygenated and circulated, which is optimal for herb growth.

Aeroponic Systems

For maximum oxygen exposure to herb roots, aeroponics systems are used. These systems use a misting spray method that allows the roots to get the needed water and nutrients but keep them exposed to the valuable oxygen in the air.

Drip Systems

For a sterile approach, drip systems will feed the water and nutrients into the containers of the herbs in smaller amounts; a timer keeps the drip system on schedule and running at specific intervals.

How to Get Rid of Algae in Hydroponics for Good!

Algae can cause major problems in hydroponics systems. It can build up and cling to any surface. This means there isn’t any system that can be safe from it once it gets a foothold. It sticks inside tubes, it can work its way into pumps, and it can bring a system to its knees.

Once it begins to decompose, it can bring with it a horrible odor. However, it is when you have a heavy infestation things get worse. This mass of algae can form a barrier against your growing mediums.

When this begins to happen, two significant things will happen. First is the precious nutrients are depleted from the system as the algae uses them itself to grow. Second, there is a severe drop in the dissolved oxygen in the system. This causes your plants to start suffocating, and means they are weaker to fight off any other pathogens.

What Is Algae and How Does it Get Into My Hydroponics System?

Algae is a simple, plant-like aquatic organism that can grow in just about any aquatic environment. Because they are so similar to plants, they require the same basis for growth; sunlight, water, and nutrients.

Algae can be an incredibly versatile and durable organism and can take hold wherever there is a minimal amount of these three basics. It’s because of their similar needs to the plants you are trying to grow in a hydroponics system that makes them difficult to prevent and address once they’ve arrived. You can’t starve them of their needs because your plants also need the same things.

In terms of how algae ever reaches your system in the first place, that is also explained by the versatility and durability of algae as an organism. While you might think that, your system is sterile, well contained and free from potential contamination sources during the setup process, algae can, and likely will, find a way into your system.

Algae gets into hydroponics systems through microscopic airborne spores. Because these spores can be so durable, it can be almost impossible to prevent them from getting into your hydroponics system. Many growers try to fathom how they get algae in their system when they have a sterile environment. The spores from algae can be carried by the wind, and it only takes one to latch onto your system. Growers themselves can even be a carrier of spores without realizing.

Once in your system, algae finds the perfect conditions for growth – assuming you’ve set up a system that’s also perfect for the plants you’re meaning to grow! This is why algae can be so problematic. They are almost impossible to keep out of your system, and once they find a home in your system, they populate incredibly rapidly.

In this light, you should expect some level of algae growth within your system. Keeping a completely algae free hydroponics system is essentially impossible, and therefore, should not be the goal you’re aiming for.

By acknowledging that come amount of algae will be present, the focus of your efforts should be to prevent it from getting out of control and overtaking your system. While a healthy system can cope with small amounts of algae, as soon as the levels increase, it will be time to harvest your crops and take drastic action before starting another growing session.

By focusing your efforts on preventing algae growth getting out of hand, you can help to make sure that algae growth remains at an acceptable level. Any strategy for algae problems should be with control rather than complete prevention, because this can be nearly impossible to do.

How to Clean Algae Out of Your Hydroponics System

A lot of this will depend on the stage of your system, you may already have an infestation, or you are building a new system and want to prevent algae from occurring. Either way, it is better that you understand what causes algae, and how you can prevent it from taking hold.

Two things to note are that algae doesn’t grow on dry surfaces, and preventing as much light as possible from reaching your nutrient solution can help minimize the risk of an algae outbreak. All your channels and conduits will have covers, which prevents light from entering. Likewise, your media beds or pots can be covered to prevent light from hitting the surface.

Growers who face algae infestations may be tempted to turn to a commercially available algaecide. While these appear to be a good solution to control an algae problem, they are in fact of very little use.

An algaecide can help to control the blooms of algae, yet, if they are misused or overused, they can damage your plants delicate rooting systems. This is more the case if your plants are small, and have not long been planted into your system.

The worst thing with these commercial products is that once they are used, they weaken in the system, and then the algae just begins to grow again. This means you need more of the product, and you end up in a cycle that shows no end.

The first thing you’ll want to do is to assess the amount of algae in the system. If it seems to be a small amount, you need to determine where this is getting into your system. It could be some light finding its way into your reservoir, or into another part of your system.

If it doesn’t become worse or affect your pump and air stones, you may be able to tackle the problem with some preventative measures until you come to the end of your growth cycle. At this stage, you can go through the following to give your system a thorough clean.

The following steps explain how to give your system a full clean. This can rid it of any traces of algae before you commence your next growing cycle.

System Clean and Sterilization

Because of how easy algae spores can be passed around via the air, it will be important to give your growing room a good clean as well as your system. There will be little benefit in cleaning your system to find you are up and running, and there are algae spores lurking on the walls or your lighting systems.

It will be your system, which is more important because it is this that is in direct contact with your plants. Growing medium and pots need their own cleaning, also if you are using clay pebbles, (Hydroton) be sure this doesn’t dry out and stays moist.

Step #1 Draining the System

Ridding your system of the old nutrient mix will be the first step. Some systems may not be using pumps; this would mean manually emptying your reservoir. If you have a recirculating system, then there are two ways to drain your tank.

If your tank has a drain valve, you can open this and let the water run out naturally. However, you will need a run off area, which is lower than your tank. If you are using the pump return method. Be sure to isolate all the electrics before removing the pump from the tank.

Remove the outlet pipe, and then connect the female connector onto the pump. You can now feed the outlet hose to your desired drain point. This will remover the water via the pump rather than naturally draining.

Once you reach the lowest point before the pump begins to run dry, you will need to turn it off. This method and the other will have a couple of inches of water remaining. Manually remove this using a sponge and a bucket.

Step #2 System Cleaning

Even though you are tackling an algae problem, these steps will be the same for a system clean after each harvest. This can be one way to be sure you have eliminated any traces of algae, pathogens or bacterial growth.

You can use two chemicals at this stage:

Food Grade Hydrogen Peroxide: This should be a 35% concentration. 3 milliliters (mls) for each gallon of water.

Unscented Bleach: The ratio of this should be 1:100. This would work out as 1.3 oz. to each gallon of water.

  1. Drain your system by either of the methods mentioned
  2. Remove pumps and air stones, these may require cleaning if algae growth reaches that far
  3. Remove any parts of your system which are hard to access
  4. Check for debris, broken roots and further algae growth
  5. With your cleaning solution of choice, use green scrubbing pads and wipe down all the areas where you see algae growth. Bottlebrushes can be used for hard to reach areas.
  6. Wipe clean and then assemble any system parts you dismantled
  7. Fill your system higher than usual as this covers the line where the algae was forming
  8. Add your sterilizing solution (bleach or hydrogen peroxide)
  9. Run your system for between 4 and 6 hours
  10. Scrubbing channels and conduits will flush this algae and debris back into your tank
  11. Drain your system and rinse with fresh water. Be sure to remove all the debris
  12. If using bleach, you need to triple flush your system
  13. Drain a final time and wipe down with clean towels
  14. You can turn on your lights as this can stop any algae starting to form and residual water

System Components

Although the algae may not be growing on your pumps or air stones, there may be traces on your growing medium and the pots. To clean all of these including pumps, the recommendation is to use hydrogen peroxide. You can though use a bleach bath to soak all of these small components. This will be a 1:1 mix, and you still need to carry out a triple rinse to remove all traces.

How to Prevent Algae from Growing in Your Hydroponics System

Algae growth in hydroponics systems is unavoidable to come extent. Anytime you’re working with nutrient rich water and sunlight, you’ll have ideal growing conditions for algae. As these are, the two main essentials needed in algae growth, and because you can’t avoid having a nutrient rich water solution, the best prevention method is to cut down on light exposure.

The best way to prevent out-of-control algae growth in your hydroponics system is to reduce your reservoir’s exposure to light as much as possible. This can be easier said than done, but there are a few ways to help with this.

  • Use Opaque or Solid Colored Materials
    One way to cut down on the potential light exposure is to use opaque and solid colored materials wherever possible. This will help prevent any light from penetrating into these parts of the system, thus reducing the potential for algae to photosynthesize and grow.
  • Cover All Exposed Water
    This step is similar to the previous step in that it’s predicated on prevented algae from ever getting started in the first place. Again, if algae can’t receive light to photosynthesize, it can’t grow and populate within your reservoir.

    There are a number of ways to cover your water, all of which depend on how your system is set up. For smaller rigs, it might be as simple as using a solid colored material to build your plant supports into. In larger systems, you may need to fashion a sort of tarp or plastic cover with holes cut out for your plants to grow through, but that covers all other areas.

Alternative Options for Preventing Algae Growth

While the most effective way to prevent algae growth in a hydroponics system is to cut off any potential light sources, there are a few alternative measures that growers can take to avoid this nuisance. These options vary in their effectiveness but can have good results when applied properly.

  • UVC Light
    One method for this is to install a UVC light in your water filtration system. This light will help to kill and eliminate potential microorganisms, algae included, that could have found their way into your system. This can be costly, and they will need to be powered as long as your system is running. However, if you have serious problems with algae, a UVC light can be a good solution.
  • Grapefruit Seed Extract
    Some studies have found that grapefruit seed extract in the correct dosages can be an effective measure for killing and preventing algae growth. Grapefruit seed extract is a powerful anti-parasitical, anti-bacterial and anti-fungal compound. When used in low doses, it has been proven to very very effective in hydroponic systems while not being toxic to plants. The dosage recommendations will be around 5 to 10 drops per gallon of water in your system. This can be sufficient to prevent algae growing.
  • Barley Straw Rafts
    This solution should only be considered if growing on a large scale in a larger rig but has also shown effectiveness in fighting algae growth. Studies have found that the aerobic decomposition of barley straw release a chemical solution which inhibits algae growth. Again, this is a slower process, and isn’t ideal for smaller growers. You do need to be sure there is lots of dissolved oxygen in your water so only aerobic decomposition takes place. You can now purchase liquid barley straw extracts for use in the prevention of algae growth, but you do need to be careful of the amount of algae death as this can reduce the amount of dissolved oxygen.

No matter which method you use to clean and control the growth of algae, in your hydroponic system, there is nothing better for prevention that limiting light exposure onto your nutrient mixture.

Algae and pH Fluctuations

One area not mentioned is how algae growth can have a severe impact on your pH levels. While methods such as ebb and flow systems are more prone to algae growth, there isn’t one system that will be free from it forming.

Algae is resilient and as soon as the conditions re almost ideal, it will get a foothold and can lead to issues. In this case, pH fluctuations. Algae uses carbon dioxide in the same way as plants, this coupled with nutrients and light help produce photosynthesis during daylight hours. As this period nears its end, the pH will usually be at its peak.

During night hours, the opposite happens. It is here the algae consumes dissolved oxygen from the water to release carbon dioxide. This itself is released back into the water via respiration. The problem here is this carbon dioxide will create carbonic acid, and as such, it causes a drop in pH levels.

These swings do nothing but cause more problems as they progress. Plants can end up suffering from nutrient lockout, or they can slowly drown through lack of oxygen in the water.


Because there is no way you can eliminate the chances of algae from forming, it is better to expect its presence and take precautions to limits its exposure. By following all the above, you stand the best chance of being algae free, and having a system, which performs at, is best.

Prevention is the best medicine because if nothing else, it will save hours of cleaning to eliminate the same problem repeatedly.

Learn How to Keep pH Stable in Hydroponics

Testing water pH

When new growers first start a hydroponic system, they often hear terms that sound confusing. One of the hardest to fathom is the pH, while you may not fully understand it in the beginning, it is something, which in theory can be learned quickly.

In summary, to keep pH levels stable, it can take a few steps and a little effort from the grower. These are the key areas you need to understand.

  • Delivering the right supply of water
  • Performing water treatment methods in response to the tested levels
  • Understanding how the addition of nutrients can affect pH levels.
  • Understanding what pH levels your given plants require

When you begin to understand what pH levels are, you quickly learn that they will never remain stable on their own accord. There are too many variables, and many external influences that will change the pH level.

It does take effort to monitor and alter your systems pH; however, this isn’t hard once you understand the core principles.

To know what pH means to your plants, and how it can affect their growth is the first area you need to understand. After looking at what pH is, we will see how it affects your system, and how you can maintain the correct levels.

What is pH?

First, up, there is a scale that runs from zero to fourteen. Every liquid will have a different reading against this scale. Plain water as an example has different pH levels depending on the source. Plain water from the faucet will have a different pH to the water in your system; this is because in many cases it is better not to use faucet water when possible.

This scale has zero, which is the most acidic, this runs up to the top (number fourteen), and this is the most alkaline. Most living things like a middle of the road balance, so this is around 7. Not only is this a good starting pH for most plants to thrive, but it is also the right level for the human body.

For plants to thrive at their best, they do favor pH levels, which sit around 5.5 to 6.5. Nevertheless, there are some plants and vegetables which like to go the other side of neutral to a pH of 8. Alkaline substances are soluble salts made up of potassium and sodium carbonate. Alkaline is the scale of the alkali within the solution.

When you have favorable pH levels in your system, this enables your plants to take up all the micro and macronutrients through the root systems. Add to this, you see faster growth in your plants because they have an increased intake of NPK (Nitrogen, Phosphorous and Potassium).

To go further in depth on this matter, you can head over to the pH levels Wikipedia page for a detailed breakdown of what these levels mean. This may appear interesting, yet it reaches a little outside what you need to know as a grower.

Acidic Solutions pH Alkaline Solution pH
Battery acid 1.0 Blood 7.35 – 7.45
Gastric acid 2.0 Hair shampoo 8.0
Lemon juice 2.4 Sea water 8.0
Cola 2.5 Permanent wave 8.5 – 9.2
Oxygenated water 2.5 – 3.0 Hand soap 9.0 – 10.0
Vinegar 3.0 Hair dye 9.5 – 10.5
Orange or apple juice 3.0 Magic straight 11.5
Beer 4.5 Household ammonia 11.5
Coffee 5.0 Household bleach 12.3
Milk 6.6 Household lye 13.5
Pure water 7.0 Drain cleaner 14

One thing, which is worthy to note, the closer you get to each end of the scale, and the liquids will burn. It doesn’t matter if it is acidic, or alkaline, so you will need to take caution when dealing with any pH level treatments.

Why pH Levels are Important in Hydroponic Systems?

We have seen when pH levels are outside the ideal range for your plants, they run the risk of not absorbing enough nutrients to help them grow. On top of this, it also helps you understand how soluble the salts are in your nutrient mixture.

Every mineral has a different tolerance when it comes to the respective pH level. As a rule of thumb, plants need high amounts of macronutrients. If the pH level is too high or too low, then these become immobile, and it is this that restricts their uptake, and leads to nutrient deficiencies.

Micronutrients on the other hand are required in smaller doses. These will be affected on either end of the pH scale. Once your pH is too low, then this means your plants can absorb too many as they are highly soluble. This doesn’t lead to nutrient deficiency; it actually leads to a solution that is toxic to your plants. If you go to a pH that is too high, then you will see a deficiency in micronutrients.

One of the first signs you need to be aware of is young foliage, which is yellowing or pale in color.

In order to keep the pH levels balanced in your hydroponic system, first, you really need to understand the elements that will affect the pH levels.

Growing Medium

Almost everything can affect your pH level in your system. One of the most significant areas will be your growing medium. A good example being calcareous rock, this will release magnesium and calcium into your solution. As soon as they leech into your water, you will need to adjust. Luckily, this isn’t a common growing medium.

Coco coir is very popular, and this can affect pH as they contain sodium chloride. Because of this, this needs to be soaked thoroughly to wash out any residual contaminants.

One other common growing medium is perlite. The pH of this is between 6 – 8, this means it can be added with no significant pH swings in either direction. Rockwool is another favorite and has a pH of between 7 – 8.5. This does require washing before use and an adjustment of the pH once it is in your system


There is a lot to learn about solution temperatures, so without going into too much detail hydroponic solutions should be around 65 to 80 degrees Fahrenheit. If it gets much warmer than this, water starts to evaporate faster than the mineral salts.

One this happens, these begin clinging to the side of your reservoir, and thus increase nutrient to water ratio. You can also find that systems, which have smaller reservoirs, suffer more than a larger reservoir. Depending the region you live, you may require either a water heater, or a water cooler to keep your mix at the ideal temperatures.

Plain Water

Hydroponic systems need a sterile environment to function at their best. Water from the faucet isn’t recommended because of the amount of treatment it has been through. Different regions can have hard or soft water, so the base pH will never be standard.

It is a recommendation to use distilled or reverse osmosis water when possible. If this isn’t readily available, you can purchase these reverse osmosis kits which sit in your plumbing system. While these can seem to be a small investment, they can pay for themselves over time.

Here is an example of a reverse osmosis filter system. It can deliver pH neutral water for drinking, as well as for your hydroponic system.

Setting Up Your Hydroponic System Correctly

Now you understand all the reasons that pH levels are important to your hydroponic system, and the plants you’re growing, it’s time to test your pH levels and get your hydroponic system running before introducing plants into the environment.

If you are still researching, the following will still apply because pH testing isn’t a one shot thing. In the beginning, you can be doing this on a daily basis until you understand how your system works. To test your pH levels, there are various ways you can do this.

By the use of litmus strips, or digital testers, you can quickly find whether you need to adjust levels up or down.

One thing to note here is that some of the better hydroponic nutrients come with a pH buffer. This takes away any sudden level change to your plants. While you still need to adjust, the extent of what you do will be minimized.

Litmus Strips

Litmus strips are one of the quickest and simplest ways to test the pH in your system. Although they are easy to keep on hand, you shouldn’t rely on them without another means of measuring in place. The way these works is the paper contains a dye, which is sensitive to any liquid it comes into contact with.

To test your system, take a sample of your water in a sterile container. Dip one of the strips into this wait until the color changes. Once there are no more changes, you compare this against a chart, which comes with the litmus pH testing kit.

You may find some of the colors can be hard to distinguish from each other, so trying to guess which one it is, isn’t the best way to be safe. Many plants may not bother with this little difference, yet this half a reading in either direction can affect plants that require a tight tolerance.

You can also find liquid testing kits, which work in the same way. With these, you add the dye to your sample, and then once the sample finishes changing color, you compare this against your chart.

Hydroponic pH Pens

The most reliable option works out the most expensive, however, this is not overly expensive, and it can last much longer than your litmus testing kits. On top of this, you will have a digital readout, so there is no way to make a mistake.

One of the common designs is the digital pH pen. Once you place the nib in your water sample, you get an exact reading, which is precise. One downside with these is that over time, the readings may fluctuate, this means your pH pen requires calibration. If you perform lots of testing, this can be a weekly exercise.

We have written a complete guide to testing the pH of your water, we highly recommend understanding the full process to stop your plants wilting.

Continual Water Treatment and pH Balancing

Now you see the equipment you need to use to test your nutrient solution; we will look at how the varying hydroponic systems can have varying pH levels. One of the more straightforward are NFT (Nutrient Film Techniques) as your solution is in direct contact with the plants root systems.

Media based systems can have readings that vary one way or the other. It is for this reason; you need to take two separate readings. The first needs to be taken from your nutrient reservoir, and the leachate, which is the chemical runoff.

This is necessary because you will have different readings before and after the rooting system. This may not vary too much if you have smaller plants, yet larger plans will mean the variance is much higher.

When adjusting your solution pH levels, the base adjustments in the reservoir need to be adjusted to the readings you obtain from the readings you come up with from the runoff solution. The reason this needs doing is that your plant roots will be facing the pH levels in the solution, which passes them, and not the solution in the reservoir.

Adjusting Your Hydroponic pH Levels

Your pH levels rise and fall for all manner of reasons. Luckily, we have seen how easy it is to fix some of these. We also saw that your nutrients would come with pH buffers when you purchase them from reputable suppliers.

These buffers are a great way to prevent spikes or drops which may shock your plants. Aside from this, these suppliers also offer chemicals that you can use to raise or lower your pH levels. One of the more frequently used comes from General Hydroponics. These have pH UP and pH down you can purchase. Because of the pH sensitivity, you do need to follow recommended doses and take separate readings, in case you need to adjust again.

The aim when making your adjustments is to make sure there is no nutrient lockout. This takes daily readings to be sure your pH level is going in the right direction

When you come to make your adjustments, there are only a few steps you need to take to make these adjustments. The main thing is to be observant of what your readings are.

  1. Take your first sample and then a reading Depending on the result you obtain, all you have to do is add between 1-2 ml of the pH Up or pH Down solution for each gallon of water you have in your reservoir.
  2. Once you add this, stir your solution with a clean implement and wait a minimum of 30-minutes so the solution can run around your system. At this point, you can take your next reading.
  3. You need to repeat these steps as required until you reach the required level. Never be tempted to add more of either chemical to reach the results faster. This will, shock your plants because you may swing too far in either direction.

When you add new nutrients, they will change your pH levels, which is why you will always need to do a new test once these have been added to the new reservoir. Other than that, it is recommended to run your tests more or less the same time each day. There are a number of natural approaches to tuning your pH if you have no pH Up or pH Down.

This is a very short-term solution and you should only use this if it is absolutely essential. Either white vinegar or citric acid may be used to reduce the pH, whereas baking soda is used to raise your pH levels. When doing this, you will need to know how much of a change there is for the amount you add.

Maintaining pH Level Recap

To summarize all the above, here is a quick recap of everything we have shown. Following these, you can maintain your pH levels and have plants that are continually thriving.

  • Check your levels daily until you get to know your system. When you see how things are running, you can reduce your testing to 2 or 3 times per week.
  • Even if you can’t afford the best testing kit there is, you should look for the best one you can afford. Litmus tests are handy to use, yet when you attempt to adjust your readings a few times, these are not as quick as pH pens.
  • If you spot your pH, levels fall between 5.8 – 6.5. You should not be tempted to make any adjustments. This reading is ideal for most plants that you may be growing.
  • Solutions which have a high pH need adjusting with pH Down.
  • Levels, which are low, need adjusting with pH UP.
  • Keep records of your testing and how much solution you add into your reservoir.

Overdosing with pH adjusters or nutrients is highly harmful to plants. On top of this, if you have a solution that drops in your reservoir, the pH change at the same time. Even topping up with water will have an effect, so be sure all your readings are when you have a full tank.

Growers who understand what their plants need, and how to adjust to keep them healthy will have some of the best crops when harvest arrives. Any grower who thinks this isn’t important may face a catastrophe.